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Why all crystals need not be bcc: Symmetry breaking at the liquid-solid transition revisited

B. Groh and B. Mulder
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 30 October 1998!

Alexander and McTague@Phys.Rev. Lett.41, 702~1978!# argued that if there is a spinodal point associated
with the liquid-solid transition in a fluid of spherically symmetric particles, the bcc phase will be uniquely
favored as the only accessible symmetry breaking structure that forms a regular three-dimensional lattice. By
reconsidering their analysis in the framework of density-functional theory, we show that at a liquid-solid
spinodal in fact many other solid stuctures also are simultaneously accessible, among them the fcc structure.
Nevertheless, the bcc structure is still shown to be special, as, independent of the details of the interaction, the
free energy of the unstable bcc phase close to the spinodal is always lower than that of the other solidlike
structures. We illustrate our general results by explicit calculations on a toy model, the ‘‘Onsager solid.’’ This
simple model also indicates that the ultimately stable crystal phase, which, as usual for sufficiently steep
repulsive forces, turns out to be fcc, is dictated by properties of the free energy that cannot be obtained
perturbatively starting from the spinodal point.@S1063-651X~99!00905-8#

PACS number~s!: 64.70.Dv, 61.50.Ah, 64.60.2i
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I. INTRODUCTION

Landau theory@2,3# is a powerful tool for the analysis o
symmetry-related aspects of phase transitions. In a sem
paper@1#, Alexander and McTague applied it to the freezi
transition of monatomic fluids of spherically symmetric pa
ticles. Their most striking result was that the bcc pha
should be uniquely favored independent of the interact
details. However, a number of real metals and the rare g
as well as many model systems, such as the hard sphere
the Lennard-Jones fluid, actually freeze into an fcc so
phase. The latter is also predicted by the elaborate den
functional theories that have been developed in the past
cades@4,5#.

Still the bcc structure seems to play an important role
nucleation processes. A large number of computer sim
tion studies have examined the possibility of bcc nuclei
the supercooled Lennard-Jones liquid, with controversial
sults. The most recent and most sophisticated work, by
Woldeet al. @6,7#, reported small bcc nuclei that attain an f
core upon growing while the surface remains bcc-like. T
was confirmed within a density-functional theory by Sh
and Oxtoby@8#, who furthermore showed that the equilib
rium solid-liquid interface locally has bcc character, to
Thus the bcc structure seems to be closer to the liquid t
the fcc in a not yet fully understood sense.

In the present work we readdress this problem from
somewhat different perspective using a combination
density-functional theory and the Landau approach. In p
ciple, a Landau expansion can be derived from any gi
approximation to the density functional by considering sm
solidlike perturbations of the liquid state. More insight c
be gained when one looks at solutions of the Euler-Lagra
equation that follows from the density-functional theor
which represent the stable and metastable states as we
the saddle points in the infinite dimensional space of den
profiles. We will present a generic picture of the typical g
bal behavior of these solutions for bcc and fcc structures
both cases a solution branch bifurcates from the liquid s
PRE 591063-651X/99/59~5!/5613~8!/$15.00
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at the stability limit of the liquid, i.e., the liquid-solid spin
odal, which turns out to be the same thermodynamic po
for both bcc and fcc solids. We determine the asympto
form of the solutions along these branches by bifurcat
analysis. Using arguments closely related to those of Al
ander and McTague, a fundamentally different behavio
obtained for bcc and fcc. However, with the help of the g
bal picture one realizes that these findings only apply to
unstable solution branches near the spinodal point, while
similarly general statement can be made about the st
branches that are typically far off from the liquid in a ‘‘soli
order parameter space’’ and cannot be described by one
small number of density Fourier coefficients. From this p
spective it is no surprise that in many cases the fcc solid
thermodynamically stable in spite of the preference for bcc
low crystallinity.

II. BIFURCATION ANALYSIS OF DENSITY-FUNCTIONAL
THEORIES

The free-energy functional for a one-component fluid
spherical particles has the general form

F@$r~r !%#5kBTE d3 r~r !@ ln r~r !l321#1Fex@$r~r !%#

~1!

with the thermal wavelengthl. The first term represents th
ideal gas entropy while the excess free energyFex depends
on the details of the particle interactions and is not kno
exactly except in trivial cases. However, a large number
approximative expressions forFex are available for simple
models, especially for the hard sphere fluid@4,5#. These are
capable of predicting the location of the freezing transiti
and the solid structure with satisfactory accuracy.

In order to obtain the equilibrium density profiler(r ) for
a given bulk densityrb , the free-energy functional is mini
5613 ©1999 The American Physical Society
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5614 PRE 59B. GROH AND B. MULDER
mized under the constraint*d3rr(r )5Vrb , i.e., using a
Lagrange multiplierm, which yields the Euler Lagrang
equation

ln r~r !l32c~1!~$r~r !%,r !2bm50. ~2!

The direct correlation functionsc(n) are defined as functiona
derivatives of the excess functional:

c~n!
„$r~r !%,r1 , . . . ,rn…52b

dnFex@$r~r !%#

dr~r1!dr~r2!•••dr~rn!
.

~3!

Elimination of the Lagrange multiplier from Eq.~2! using
the normalization condition yields

ln r~r !2
1

VE d3r 8ln r~r 8!2c~1!
„$r~r !%,r …

1
1

VE d3r 8c~1!
„$r~r !%,r 8…50. ~4!

We now employ a Fourier representation of the density

r~r !5rbS 11(
q

h~q!eiq•r D ~5!

with a possibly infinite but discrete set of wave vectorsq and
h(0)50 to ensure correct normalization. We require the o
gin r50 to be a symmetry point of the lattice so thath(q)
must be invariant under all point symmetries. Therefore
depends only on the absolute value ofq. After insertion of
Eq. ~5! into Eq. ~2! or Eq. ~4!, Fourier transformation, and
expansion of the logarithm, one obtains forqÞ0

(
n51

`
~21!n11

n (
q1

•••(
qn

h~q1!•••h~qn!dS q2(
i

qi D
2

1

VE d3re2 iq•rc~1!
„$r~r !%,r …50. ~6!
f

-

it

The homogeneous densityr(r )5rb always solves Eq.~6!
becausec(1)(rb ,r ) is a constant, but one expects that beyo
a critical bulk densityrc it no longer corresponds to a loca
minimum of the density functional but rather to a sadd
point.

By a bifurcation analysis of Eq.~6! we shall determine the
stability limit rc of the liquid solution as well as the chara
ter of the bifurcating solutions that become stable aboverc .
To this end we expand the bulk densityrb and the Fourier
componentsh(q) with respect to a small dimensionless p
rametere:

rb5rc1er11e2r21•••, ~7!

h~q!5eh1~q!1e2h2~q!1•••, ~8!

which is inserted into Eq.~6! and then sorted according t
powers ofe yielding a hierarchy of bifurcation equations o
which the first three are

h1~q!@12rcc̃
~2!~rc ,q!#50, ~9!

2h1~q!r1c̃~2!~q!1h2~q!@12 c̃~2!~q!#2rcr1h1~q!

3 c̃~3!~q,0!2
1

2 (
q1 ,q2

d~q2q12q2!h1~q1!h1~q2!

3@11rc
2c̃~3!~q1 ,q2!#50, ~10!

and
h3~q!2 c̃~2!~q!@r2h1~q!1r1h2~q!1rch3~q!#2 c̃~3!~q,0!@r1
2h1~q!1r1r2h2~q!1r2rch1~q!#

2 (
q1 ,q2

d~q2q12q2!H h1~q1!h1~q2!F r̃cr1c~3!~q1 ,q2!1
1

2
r1rc

2c̃~4!~q1 ,q2,0!G1h1~q1!h2~q2!@11rc
2c̃~3!~q1 ,q2!#J

2
1

2
c̃~4!~q,0,0!r1

2rch1~q!2
1

6 (
q1 ,q2 ,q3

d~q2q12q22q3!h1~q1!h1~q2!h1~q3!@rc
3c̃~4!~q1 ,q2 ,q3!22#50. ~11!
Here c̃(n)(r,q1 , . . . ,qn21) denotes the Fourier transform o
the nth liquid direct correlation function:

c̃~n!~r,q1 , . . . ,qn21!5E d3r 1•••d3r n21c~n!~r,r1 , . . . ,rn!

3e2 iq1•~r12rn!
•••e2 iqn21•~rn212rn!.

~12!
When the density argument ofc̃(n) is omitted, as in Eqs.~10!
and ~11!, it is understood to berc .

The first bifurcation equation determines the critical~i.e.,
spinodal! density as the smallest solution of

12rcc̃
~2!~rc ,q!50. ~13!

It occurs at the wave numberq* of the global maximum of
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PRE 59 5615WHY ALL CRYSTALS NEED NOT BE bcc: SYMMETRY . . .
c̃(2)(rc ,q), which determines the wavelength and thus
lattice constant of the bifurcating solid solution. We rema
that this lattice constant will in general deviate from the o
that follows by the restriction of one particle per unit cell
the bulk densityrc . The rc defined in this way is indepen
dent of the lattice structure. This means that solutions w
different structures can branch off from the liquid branch
the same density. Equation~9! also shows thath1(q)50 for
all q with qÞq* .

Let us now consider the second bifurcation equation fo
wave vectorq in the first shell~i.e., uqu5q* ) for which the
terms withh2(q) drop out due to Eq.~13!. There are two
fundamentally different possibilities, depending on wheth
the sum overq1 and q2 in Eq. ~10! reduces to zero or not
The former will occur if the sum of any two wave vectorsq1
and q2 of the first shell never equals another vector in t
shell, i.e., if equilateral triangles cannot be formed by
vectors in the first shell. This is actually the case for m
conceivable solid structures, e.g., simple cubic, where
first shell consists of the six vectors obtained fromq* (1,0,0)
by sign changes and permutations of the components,
also for fcc, where the eight vectors of the first shell can
generated fromq* /A3 (1,1,1). We recognize the above co
dition for the nonvanishing of the sum as Alexander a
McTague’s condition for the occurrence of a third-order te
in the Landau free energy@1#. They found that the only pos
sibility for a nonzero sum that is compatible with a thre
dimensional periodic lattice corresponds to the bcc struc
whose first shell in reciprocal space is formed by the twe
vectors generated byq* /A2 (1,1,0). The thirty vectors given
by the edges of a regular icosahedron also allow the for
tion of equilateral triangles but do not produce period
structures. However, this case may be relevant for quasic
tals whose refraction patterns do exhibit icosahedral sym
try @9#. A third, rather unlikely possibility also mentioned b
Alexander and McTague is a two-dimensional triangular
tice generated by the six vectors pointing from the cente
the vertices of a regular hexagon.

The liquid state direct correlation functionsc(n) are in-
variant under anyO(3) transformation acting simultaneous
on all argumentsr1 , . . . ,rn . By choosingrn50 in Eq. ~12!
one concludes that their Fourier transforms are also invar
under O(3) transformations ofq1 , . . . ,qn21. As any two
equilateral triangles with one corner at the origin can
transformed into each other by a rotation, all terms in
sum of Eq.~10! are equal. For the bcc lattice there are fo
such terms. The magnitude ofr1 is actually irrelevant since
it just sets thee scale. Therefore we can setr15rc and
obtain

h1~q* !52
11rc

2c̃~3!~q* ,0!

2@11rc
2c̃~3!~q1 ,q2!#

, ~14!

whereq1 and q2 are any two vectors of the first shell suc
that uq1u5uq2u5uq11q2u.

However, solutions of other type, e.g., fcc, may also ex
whenr150. In order to construct these solutions to lowe
order ine one must take into account vectors of the seco
shells, i.e., those that can be reached by the summatio
two first shell vectors. For fcc three different second she
e
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contribute, which are generated by permutations and s
changes of the vectors q2005q* /A3 (2,0,0), q220

5q* /A3 (2,2,0), andq2225q* /A3 (2,2,2). Equation~11!
evaluated forq* and Eq.~10! evaluated forq in one of the
second shells form a coupled sytem of equations which
termines h1(q* ), h2(q200), h2(q200), and h2(q200). The
number of possibilities to write a given second shell vec
as a sum of two first shell vectors is 4, 2, and 1 for the sh
~200!, ~220!, and ~222!, respectively, and(q1 ,q2

d(q2q1

2q2) with q5q15q* gives 3, 3, and 1 for the three cases
second shell vectorsq2. Using r256rc to allow for solu-
tions above and belowrc , one gets

h2~q200!@12rcc̃
~2!~q200!#22h1

2~q* !@11rc
2c̃~3!~q1 ,q200!#

50, ~15!

h2~q220!@12rcc̃
~2!~q220!#2h1

2~q* !@11rc
2c̃~3!~q1 ,q220!#

50 ~16!

h2~q222!@12rcc̃
~2!~q222!#2

1

2
h1

2~q* !@11rc
2c̃~3!~q1 ,q222!#

50, ~17!

and

7rcc̃
~2!~q* !7rc

2c̃~3!~q* ,0!23h2~q200!

3@rc
2c̃~3!~q1 ,q200!11#

23h2~q220!@rc
2c̃~3!~q1 ,q220!11#2h2~q222!

~18!

3@rc
2c̃~3!~q1 ,q222!11#2

1

6
h1

2~q* !

3 (
q1 ,q2 ,q3

d~q2q12q22q3!@2rc
3c̃~4!~q1 ,q2 ,q3!21#

50,

where the arguments ofc̃(3) in Eqs.~15!–~18! are chosen so
that uq1u5uq11q200u5uq11q220u5uq11q222u5q* . The sum
in Eq. ~18!, which runs over vectorsq1 , q2, and q3 in the
first shell,q being any fixed vector of this shell, contains 2
terms which, however, are not all equal because not all qu
rilaterals formed byq, q1 , q2, andq3 have the same shape
When Eqs.~15!–~17! are solved for theh2’s and inserted
into Eq. ~18!, an equation forh1(q* ) results that either has
two or zero solutions, depending on the values of the seco
to fourth-order direct correlation functions and on the sign
r2. As realistic models will have fcc solutions correspondi
to stable or metastable solid states belowrc , we expect the
fcc branch to bifurcate into the negative direction, i.e., to fi
solutions for negativer2.

In order to estimate the stability of the fcc and bcc so
tions, we calculate the free-energy for both states to lead
order in the parametere. We define the free- energy densi
difference D f 5„F@$r(r )%#2F@rb#…/V between the liquid
and the solid. It is straighforward to derive the expansion
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5616 PRE 59B. GROH AND B. MULDER
bD f 5 (
n52

`

(
q1

•••(
qn

d~q11•••1qn!h~q1!•••h~qn!

3S ~21!n

n~n21!
rb2

rb
n

n!
c̃~n!~rb ,q1 , . . . ,qn21! D . ~19!

This expression actually is the Landau expansion of the g
eral mean field free energy Eq.~1! up to arbitrary order,
including secondary and higher order parametersh(qÞq* ).
Inserting Eqs.~7! and ~8!, one obtains for the bcc solution

bD f bcc522e3h1
2~q* !rc@11rc

2c̃~3!~q* ,0!#, ~20!

where (]/]r) c̃(2)(r,q)5 c̃(3)(r,q,0) has been used. In th
fcc case no terms of ordere3 occur and Eqs.~15!–~18! have
to be applied to simplify theO(e4) term, which after some
algebra results in the surprisingly similar expression

bD f fcc572e4h1
2~q* !rc@11rc

2c̃~3!~q* ,0!#. ~21!

III. GLOBAL BEHAVIOR OF THE SOLUTIONS:
UNSTABLE AND STABLE BRANCHES

After we have determined in the preceding section
asymptotic solutions close to the spinodal, their significa
will become clearer if we look at the global behavior of t
different solution branches. To this end we construct in t
section generic bifurcation diagrams for the freezing to
and bcc solids which follow from the results of the preced
section together with some plausible assumptions on the
istence of solid solutions of the Euler Lagrange equation
lower densities. First we observe that the liquid state is
cally stable forrb,rc but unstable forrb.rc . At unstable
solutions there are directions in theh(q) space that lower the
free energy, i.e., these solutions are saddle points
D f @$h(q)%#. Since the solutions obtained by the bifurcati
analysis are those closest to the liquid in the vicinity ofrc ,
they must be unstable forrb,rc . On the other hand, a re
alistic theory that predicts a first-order freezing transiti
will also have stable solutions below the spinodal, with
larger degree of order. It is natural to assume that these
connected to the unstable branch at a point where hig
derivatives ofD f vanish, which leads to the situation d
picted in Fig. 1.

A negative value ofh(q* ) gives a lattice with maxima o
r(r ) at the interstitials of the original lattice, i.e., the poin
that have maximal and equal distances from the surroun
lattice sites. For fcc the lattice formed by the interstitials
just the original lattice shifted by half the cube size alon
e.g., the~100! direction. Therefore the fcc bifurcation dia
gram is symmetric with respect toh(q* )↔2h(q* ): for any
solution with positiveh(q* ) an equivalent solution exist
with the opposite sign ofh(q* ) @and of h(q) with q in
higher ‘‘odd’’ shells#, which represents the same structu
shifted in real space. On the other hand, the interstitials
the bcc lattice form a more complicated cubic lattice with
basis that is not equivalent to the bcc lattice, which expla
the absence of the corresponding symmetry in Fig. 1~a!. As
the bcc branch forrb,rc ~i.e.,e,0) should be connected t
locally stable bcc solutions with positiveh(q* ), one expects
n-
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h1,bcc(q* ),0. Moreover the free-energy differenceD f to
the liquid should be positive for the unstable branch. Bo
requirements are fulfilled when 11rc

2c̃(3)(q* ,0).0 and 1

1rc
2c̃(3)(q1 ,q2).0 for q15q25uq11q2u5q* @see Eqs.

~14! and ~20!#, which we expect to be generally valid i
realistic theories of freezing.

The vanishing ofr1 for the fcc solutions, induced by th
impossibility to form equilateral triangles from the vectors
the first shell in reciprocal space, leads to different pow
law behaviors ofD f for the unstable branches near the sp
odal: due to ebcc;rb2rc and e fcc;urb2rcu1/2 one has
D f bcc;(rc2rb)3 and D f fcc;(rc2rb)2 so that 0,D f bcc
,D f fcc if comparison is made at the same bulk density~not
at the same value of the order parameter as was implic
done in Ref.@1#!. Thus general symmetry-based argume
predict a lower free energy along the unstable branch of
bcc solid compared to the fcc solid. However, no gene
conclusion is possible concerning the relative depths of
bcc and fcc minima represented by the upper branche
Fig. 1. These depend on the details of the full functional a
cannot be determined from a local analysis at the bifurca
point. Results of density-functional theories for hard sphe
indicate, in agreement with simulation results, that the so
density at liquid-solid coexistence is strongly peaked a
cannot be described by one or a few Fourier component
Eq. ~5! @10#. But, even if the stable branches were clo

FIG. 1. Schematic bifurcation diagrams for~a! the bcc and~b!
the fcc solid. The first Fourier coefficienth(q* ) of the solidlike
solutions of the Euler Lagrange equation is shown as a functio
the bulk densityrb . Solid and dashed lines correspond to loc
minima and saddle points of the free energy, respectively. The s
of the unstable solid branch at the spinodal densityrc is finite for
bcc and infinite for fcc.
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PRE 59 5617WHY ALL CRYSTALS NEED NOT BE bcc: SYMMETRY . . .
enough to the liquid atrb.rc so that a truncation of Eq.~19!
after the fourth term was a good approximation, a gene
statement would still be impossible due to the dependenc
c̃(4). The more universal second- and third-order terms al
obviously are not sufficient to produce stable solutions at
Therefore we repudiate Alexander and McTague’s conc
sion that bcc should be favored~as the stable solid phase!
when the first-order character of the transition is not too p
nounced.

The above result concerning the height of the free ene
barrier in order parameter space between the liquid and
stable solid branches may be relevant for the nucleation
the solid phase, although we have assumed translationa
variance ofr(r ) from the beginning, whereas nucleatio
usually takes place via spatially inhomogeneous nuclei. S
computer simulations@6,7# as well as density-functional ca
culations@8# provide evidence for the occurrence of local b
stucture within these nuclei in systems with stable
phases. An earlier application of symmetry arguments
nucleation was given by Klein and Leyvraz@11#, who, how-
ever, used a concrete example for the functional and did
discuss fcc solutions because they only took into account
first two bifurcation equations. Their conclusion is that t
critical nucleus must have bcc symmetry near the spinod

Along the same lines we can discuss the stability of
icosahedral quasicrystal for which the first shell in recipro
space is formed by the edges of a regular icosahedron. H
the sum in Eq.~10! has four terms ifq15q25q5q* , as for
the bcc case. Therefore the amplitude of the bifurcating
lutions is again given by Eq.~14!. However, the correspond
ing free energy is

bD f ico525e3h1
2~q* !rc@11rc

2c̃~3!~q* ,0!#. ~22!

Hence below the spinodal~i.e., for e,0) the free energy of
the unstable branch is higher for the icosahedral struc
than for bcc by a factor 5/2.

By the same methods we find that for the hypotheti
triangular lattice mentioned above the amplitude of the bif
cating solutions is twice that given by Eq.~14! and the cor-
responding free-energy difference to the liquid is twice
large as that of the bcc structure.

IV. A SIMPLE EXAMPLE

In this section we consider a specific example for
density functional to illustrate and corroborate the gene
findings of the preceding sections. Specifically, we emp
the second virial approximation for the excess free energ

Fex@$r~r !%#52
1

2E d3rd3r 8r~r !r~r 8! f ~ ur2r 8u!,

~23!

where f 5exp(2bw)21 is the Mayer function for the inter
action potentialw. We consider a hard sphere potential f
particles of diameters so that f (r )5c(2)(r )52Q(r 2s).
This approximation has many merits in the field of liqu
crystals but it is reliable only for low bulk densities. At de
sities near the freezing transition it does not yield quant
tively reasonable results, but still captures the essential qu
al
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tative features. A short discussion of more sophistica
density functionals will be given in the next section.

Instead of a full minimization with respect to an arbitra
solidlike r(r ), we follow the usual strategy to make a tri
parametrization of the inhomogeneous density and to m
mize only with respect to a small number of parameters. F
we examine the commonly applied Gaussian approximat

r~r !5
rb

rs
S a

p D 3/2

(
R

e2a~r2R!2
, ~24!

where the parametera measures the width of the densi
peaks that are located at the lattice sitesR. The density of the
lattice sitesrs ~and thus the magnitude of the lattice vecto!
is treated as an additional minimization parameter and
fixed by the bulk densityrb . Thus solutions with more or
less than one particle per site are included. The correspo
ing Fourier coefficients are

h~q!5e2q2/4a, ~25!

where the absolute values of the wave vectors in the
shell for fcc and bcc lattices are

q1
fcc52pA3S rs

4 D 1/3

, q1
bcc52pA2S rs

2 D 1/3

. ~26!

The excess free energy is calculated from

bFex /V52
1

2
rb

2S f̃ ~0!1(
q

h~q!2 f̃ ~q! D ~27!

with the Fourier transformed Mayer function

f̃ ~q!524ps3
sinqs2qs cosqs

~qs!3
~28!

using q values of the lowest 10 to 20 shells. For the ide
contribution to the free energy, one has the expansion

bF id /V5rb~ ln rbl321!1rb(
n52

`
~21!n

n~n21!

3(
q1

•••(
qn

d~q11•••1qn!h~q1!•••h~qn!.

~29!

The sums overqi can be replaced by sums over shells wh
appropriate coefficientsaq1•••qn

are added that take into ac
count the number of possibilities to add vectors from she
q1 , . . . ,qn to zero. These coefficients have been calcula
~for n<10) by a shortMATHEMATICA program. While Eq.
~29! is very convenient for small values ofa, when h(q)
decreases quickly with increasingq, the series does not con
verge for largerq. @The convergence radius is 1/8 ifh(q1) is
assumed to be the only nonzero Fourier coefficient.# There-
fore we used Eq.~29! only for those (a,rs) for which
h(q1)<0.09, while for largera the three-dimensional inte
gral
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bF id /V5
1

Vc
E

Vc

d3rr~r !@ ln r~r !l321# ~30!

over the unit cellVc was calculated numerically using a sta
dard routine.

The bifurcation density of this model, obtained from E
~13! with c̃(2)(rc ,q)5 f̃ (q), is rc52.770 and the critical
wave numberq* 55.763; here and in the followings is used
as the unit of length. The site densities at the bifurcat
point arers

fcc50.5941 andrs
bcc50.5458. The enormous dif

ference betweenrs andrc as well as the fact thatrc is much
larger than the density of close packing of hard spheres
due to the crudeness of the density-functional approximat

Contour plots ofF(rs ,a) at bulk densities above an
belowrc are shown in Fig. 2. Forrb.rc , F decreases from
the constant valueF(rs,0) for the liquid with increasinga
and exhibits a minimum corresponding to a quite stron
peaked structure. The ratio of the decay length 1/Aa to the
nearest-neighbor distance is 0.147 at the minimum for
case shown in Fig. 2~a!. On the other hand, the liquid i
locally stable forrb,rc and a saddle point occurs at a
intermediate value ofa in addition to the solid minimum. It
is this saddle point that is accessible by the bifurcation an
sis of Sec. II. We tracked the positions of the saddle po
and the minimum as a function of the bulk density by n

FIG. 2. Contour plots of the free energy of a fcc structure with
the Gaussian density approximation as a function of the width
rametera and the lattice site densityrs for bulk densities above and
below the bifurcation densityrc52.7705. The black dots denot
stationary points.
.

n

re
n.

y

e

y-
t

-

merical solution of]F/]rs5]F/]a50 ~see Fig. 3!. Expres-
sions for the partial derivatives can easily be derived fr
Eqs.~27!, ~29!, and~30!. As expected, both stationary poin
approach each other for decreasingrb and merge at a certain
threshold density below which no solid solution exists. Ho
ever, in the immediate vicinity ofrc the fcc solutions show a
peculiar behavior@see the inset in Fig. 3~b!#: attached to the
unstable branch one finds a short additional branch of st
solutions which approaches the bifurcation point with
power law;(rb2rc)

3/2. This artifact is a consequence o
the restricted parameter space that enforces a fixed rela
ship between the first and second shell coefficients@Eq.
~25!#, e.g., h(q200)5h(q111)

4/3, which is not compatible
with the behavior of the exact solution@see Eq.~15!#.

These problems are avoided with a more general ‘‘cum
lant’’ ansatz for the density

r~r !5C expS 2(
j 51

n

a j (
qPSj

eiq•r D , ~31!

where j runs over the firstn shells Sj . The constantC
5C@$a j%# is fixed by the normalization*d3rr(r )5rbV.

a-
FIG. 3. Bifurcation diagrams for bcc and fcc solutions of t

stationarity equation. The first Fourier coefficient is shown a
function of the bulk density. The upper curves are calculated w
the Gaussian ansatz Eq.~24!, the lower curves with the cumulan
ansatz Eq.~31!. Solid lines correspond to local minima, dash
lines to saddle points. The dotted lines represent the asymp
behavior near the bifurcation point, which is linear for bcc a
square-root-like for fcc.
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This ansatz allows independent variations of the firstn Fou-
rier coefficients while for large values of thea j it approxi-
mately reproduces the Gaussian behavior near the la
points. Actually for the stable branches it yields lower fr
energies than the Gaussian ansatz, indicating that it is cl
to the exact solution. We setn54 which includes all shells
that can be reached by a sum of two first shell vectors,
those for whichh2(q)Þ0 according to the bifurcation analy
sis. The Fourier coefficientsh(q) ~and the constantC) are
determined by three-dimensional fast Fourier transforma
with 16 points in each dimension. The excess free energ
then again obtained from Eq.~27! while the ideal free energy
is

bF id /V5rbF ln C211(
j 51

n

Nja jh~qj !G , ~32!

Nj being the number of vectors in shellSj . Figure 3 shows
that with this ansatz,h(q1) of the saddle point branch ap
proaches the liquid axis with an infinite slope and with t
amplitude predicted by Eqs.~15!–~18!.

Results for the free energy along the various solut
branches are presented in Fig. 4. In order to make the di
ences more visible, the functionKrb with an appropriately
chosen value ofK was substracted. The unstable bcc bran
indeed lies below the unstable fcc branch, as predicted by
general analysis. However, this relationship is reversed
the stablebranches for densitiesrb.2.2. Phase coexistenc
can be determined from Fig. 4 by the double tangent c
struction, which yields a liquid-fcc transition while th
liquid-bcc coexistence is only metastable. Already t
simple example shows the mechanism that can favor the
structure as the stable phase in spite of the exceptional
played by the bcc structure in the vicinity of the bifurcatio
point.

FIG. 4. Free energy along the unstable~upper parts! and stable
~lower parts! solution branches for fcc and bcc structures obtain
with the cumulant ansatz. Also shown is the free energy of
liquid. To make the differences more clearly visible, a linear fun
tion of the bulk density has been substracted. This does not pre
the possibility to determine phase coexistence by the double tan
construction from these curves which yields the densities of
coexisting liquid and fcc solid marked by black dots.
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V. CONCLUSIONS

In summary, we have shown that the liquid state becom
unstable to solid fluctuations of different symmetries at
same spinodal densityrc . The symmetry differences be
tween fcc and bcc structures manifest themselves in diffe
exponents for the density dependence of the order param
and the free energy belowrc along the bifurcating branches
But, since these branches correspond to unstable solut
the bcc structure generically has a lower maximum in
free energy than fcc, not a lower minimum as implied
Alexander and McTague, whereas a small order param
expansion cannot access the relative stability of the sta
branches. For Onsager’s second-virial density-functio
theory of the isotropic-nematic transition, it has been sho
that even if the bifurcation analysis is carried through to ve
high order, it only captures the unstable branch up to
inflection point@12#.

The relation of our results to the observation of bcc ord
in nucleation phenomena is not straightforward because o
bulk fluctuations were considered. A rigorous treatment
spatially inhomogeneous nucleating clusters is probably
feasible within bifurcation analysis because the structure
the core of the nucleus will be close to the stable b
branch. However, near the spinodal the nucleus will exh
reduced crystalline order across abroad interface to the
metastable liquid. Therefore its free energy of formation m
be approximated by an integral over the bulk free ene
corresponding to the local degree of order at a given ra
distance. This integral will be dominated by the contributio
of structures near the unstable branch. This reasoning w
predict a preference for bcc order in the interface of
cluster, in accordance with the simulation results@6,7#.

We add a final remark concerning the relevance of
results to the cases of more realistic~compared to the
second-virial approximation of Sec. IV! density-functional
theories for hard spheres. They are often explicitly co
structed in a way that reproduces the Percus-Yevick appr
mation to the liquid direct correlation function. In this ca
Eq. ~13! has no solution for packing fractionsh,1, which
means that there is no liquid-solid spinodal. However, sin
the Percus-Yevick result presumably is not a very accu
description of the structure of the strongly ‘‘supercom
pressed’’ liquid, it is not clear at the present stage what
corresponding behavior of theexactdensity functional would
be.
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